Editor en La Ecuación Digital. Consultor de Innovación y Estrategia…
La colaboración entre radiólogos de tres hospitales con un alto volumen de pacientes – el Hospital 12 de Octubre y el Hospital Ramón y Cajal de Madrid, y el Hospital de Sant Pau de Barcelona– con expertos tecnológicos en IA y partners de IT, está acelerando el uso de tecnologías de vanguardia para el cuidado de la salud, manteniendo la privacidad de los datos del paciente mediante la aplicación del Aprendizaje Federado .
Esta asociación permite aunar la experiencia clínica de los tres hospitales implicados para desarrollar modelos de diagnóstico automatizados, mejorando la atención a los pacientes.
Aunque el diagnóstico definitivo de COVID-19 se realiza mediante pruebas microbiológicas -como PCR o test de antígenos-, la principal alteración en los pacientes sintomáticos es respiratoria.
Por tanto, la placa de tórax se ha convertido en la prueba de cribado inicial predeterminada en todos los pacientes con clínica sospechosa, lo que hace que su disponibilidad e inmediatez sean imprescindibles.
Durante la pandemia, los radiólogos han analizado un gran número de placas de tórax, combinando su experiencia previa con el aprendizaje derivado de los hallazgos que aportaban las radiografías de miles de pacientes.
Sin embargo, la necesidad de analizar un número ingente de imágenes con hallazgos sutiles requiere tiempo, formación y experiencia, convirtiendo a la IA en una herramienta altamente adecuada para este fin.
Aprendizaje Federado
La plataforma de Aprendizaje Federado, desarrollada por Capgemini, basada en compartir modelos de IA entrenados con los datos de las imágenes, permite la creación de un modelo de diagnóstico global que mejora significativamente las versiones locales, beneficiando especialmente, a los centros de salud con menor experiencia.
La precisión en el diagnóstico de COVID-19, obtenida en este estudio de investigación, es del 89% para el modelo global, mientras que con el mejor de los modelos locales se alcanza solo una precisión del 71%. Todo ello garantizando la privacidad de los pacientes y de sus datos.
El protocolo clínico ha sido desarrollado en el marco de colaboración entre Capgemini y el Grupo de Enfermedades Multisistémicas del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS).
También han contado con el apoyo de varios socios tecnológicos como Cisco, Intel, Vodafone España y Microsoft, con casos clínicos procedentes de los hospitales mencionados anteriormente. Gilead Sciences, compañía farmacéutica experta en Virología y pionera en desarrollar un tratamiento eficaz para COVID-19, ha apoyado este proyecto desde su inicio, aportando su conocimiento y experiencia para contribuir al éxito del proyecto.
La computación también resulta fundamental. Cisco e Intel han proporcionado la infraestructura de computación para realizar los diagnósticos. Cada hospital dispone de un nodo de computación local -basado en los procesadores Intel® Xeon® Scalable de tercera generación y los servidores UCS de Cisco- que contiene el modelo que aprende de las imágenes radiológicas. Los modelos locales son agregados utilizando Azure Confidential Computing basado en la tecnología SGX de Intel® garantizando la protección de los modelos.
El Dr. Javier Blázquez, Jefe de Radiología del Hospital Ramón y Cajal, destaca que “el aprendizaje federado permite mejorar nuestra fiabilidad diagnóstica, ya que cuando la experiencia de un centro se comparte entre varios, los resultados mejoran mucho con respecto a los obtenidos por separado”.
La Dra. Beatriz Gomez-Anson, Jefe Clínico e Investigador Principal en el Hospital Sant Pau, señala que “este proyecto muestra el valor añadido de las herramientas de IA para ser implementadas por los médicos especialistas en Radiodiagnóstico”.
El proyecto ha salido adelante gracias a las aportaciones de Intel y del programa de aceleración digital de Cisco (Country Digital Acceleration, CDA), denominado Digitaliza en España.